Processing math: 0%

Tuesday, March 8, 2016

Inscribed and circumscribed circles

Question:
Two circles are given
\begin{eqnarray} & & x^2+y^2-6ax+2ay+20a-10 = 0  \\ & & x^2+y^2 = 4 \end{eqnarray}
Find a so these circles are inscribed or circumscribed.

Answer:
Equation (1) can be arranged as follows:
\begin{eqnarray} & & x^2 -6ax + (3a)^2 -(3a)^2 + y^2 +2ay + (a)^2 -(a)^2 = 10 - 20a  \nonumber \\ & & \rightarrow x^2 -6ax + (3a)^2 + y^2 +2ay + (a)^2  = 10 - 20a + (3a)^2 + (a)^2 \nonumber  \\ & & \rightarrow (x - 3a)^2 + (y + a)^2 = 10a^2 -20a +10  \nonumber \\ & & \rightarrow (x - 3a)^2 + (y + a)^2 = 10(a-1)^2 \end{eqnarray}
Therefore, (2) has the center (0, 0) and the radius 2. Circle (3) has the center (3a, -a) and radius \sqrt{10}|a-1|. The distance between those centers is
d = \sqrt{(3a-0)^2+(-a-0)^2}=\sqrt{10a^2}=\sqrt{10}|a|
If a=1, the radius becomes zero. Thus, a \neq 1. Let r_1 and r_2 be radii of two circles. In general, when d=r_1 + r_2, they are circumscribed. When d=|r_1 - r_2|, they are inscribed. Then, these conditions can be combined as d = |r_1 \pm r_2|. Now consider the case in a>1. Use the definition above:
\begin{equation} \sqrt{10}|a| = | \sqrt{10}(a-1) \pm 2 | \end{equation}
Square both sides and solve for a.
\begin{equation} a = \frac{5 \pm \sqrt{10}}{10} < 1 \end{equation}
The result is contradicted. Consider when a<1.
\begin{equation} \sqrt{10}|a| = | \sqrt{10}(1-a) \pm 2 | \end{equation}
Likewise, solve for a.
\begin{equation} a = \frac{5 \pm \sqrt{10}}{10} \end{equation}
which is the proper result.

Powered by Hirophysics.com

No comments:

Post a Comment