
A parabola is given as
\begin{equation}
y=\frac{1}{4}x^2-1
\end{equation}
A circle is also given in the same plane:
\begin{equation}
x^2+y^2=16
\end{equation}
Calculate the enclosed area of the upper part segmented by the parabola and the circle.
Answer:
Find the intersections first
. From equation (2), the ranges of $x$ and $y$ are $-4\leqq x,y \leqq 4$. Solve for $x^2$ in (2).
\begin{equation}
x^2=16-y^2
\end{equation}
Plug it in (1)
\begin{eqnarray}
& & y = \frac{1}{4}(16-y^2)-1 \\
& & y^2 = 4y -12 = 0 \\
& & (y-2)(y+6) = 0
\end{eqnarray}

\begin{eqnarray}
&=& \left(\pi 4^2 \times \frac{60}{360}\right) - \left(\frac{1}{2}\times 2 \times 2\sqrt{3}\right) \\
&=& \frac{8}{3}\pi - 2\sqrt{3}
\end{eqnarray}
The lower part is constructed by the functions between $y=2$ and $y=\frac{1}{4}x^2-1$.
\begin{eqnarray}
& &\int^{2\sqrt{3}}_0 \left\{2-\left(\frac{1}{4}x^2-1\right)\right\}dx \\
& & = \left[3x-\frac{1}{4}\cdot \frac{x^3}{3}\right]^{2\sqrt{3}}_0 \\
& & = 3 \times 2\sqrt{3} - \frac{1}{4} \times \frac{(2\sqrt{3})^3}{3} \\
& & = 4\sqrt{3}
\end{eqnarray}
Then, the upper shaded and lower parts are added.
\[
A_{\mathrm{half}}=\frac{8}{3}\pi - 2\sqrt{3}+4\sqrt{3}=\frac{8}{3}\pi + 2\sqrt{3}
\]
Therefore, the area is
\[
A = 2 \times A_{\mathrm{half}}=\frac{16}{3}\pi + 4\sqrt{3}
\]
Powered by Hirophysics.com
No comments:
Post a Comment