Question:
A curved surface, $S$, is given as
$\vec{r}=\cos u \sin v \vec{i} + \sin u \sin v \vec{j} + \cos v \vec{k}$
$(0\leqq u \leqq 2\pi, 0\leqq v \leqq \pi)$
(1) Find $\frac{\partial\vec{r}}{\partial u}\times\frac{\partial\vec{r}}{\partial v}$.
(2) Find $\iint_S \left| \frac{\partial\vec{r}}{\partial u}\times\frac{\partial\vec{r}}{\partial v}\right| dudv$.
Answer:
(1) Take the partial derivative.
\begin{eqnarray}
\frac{\partial\vec{r}}{\partial u} &=& -\sin u \sin v \vec{i} + \cos u \sin v \vec{j} \\
\frac{\partial\vec{r}}{\partial v} &=& \cos u \cos v \vec{i} + \sin u \cos v \vec{j} -\sin v \vec{k}
\end{eqnarray}
Therefore,
\[
\frac{\partial\vec{r}}{\partial u}\times\frac{\partial\vec{r}}{\partial v} =
\left| \begin{array}{c}
\vec{i} & \vec{j} & \vec{k} \\
\left(\frac{\partial\vec{r}}{\partial u}\right)_i & \left(\frac{\partial\vec{r}}{\partial u}\right)_j & \left(\frac{\partial\vec{r}}{\partial u}\right)_k \\
\left(\frac{\partial\vec{r}}{\partial v}\right)_i & \left(\frac{\partial\vec{r}}{\partial v}\right)_j & \left(\frac{\partial\vec{r}}{\partial v}\right)_k \\
\end{array}
\right| \\
=
\left| \begin{array}{c}
\vec{i} & \vec{j} & \vec{k} \\
-\sin u \sin v & \cos u \sin v & 0 \\
\cos u \cos v & \sin u \cos v & -\sin v \\
\end{array}
\right| \\
=
\left| \begin{array}{c}
\cos u \sin v & 0 \\
\sin u \cos v & -\sin v \\
\end{array}
\right|\vec{i}
-
\left| \begin{array}{c}
-\sin u \sin v & 0 \\
\cos u \cos v & -\sin v \\
\end{array}
\right| \vec{j}
+
\left| \begin{array}{c}
-\sin u \sin v & \cos u \sin v \\
\cos u \cos v & \sin u \cos v \\
\end{array}
\right|\vec{k} \\
=-\cos u \sin^2 v\vec{i}-\sin u \sin^2 v\vec{j}-\sin v \cos v(\sin^2 u +\cos^2 u)\vec{k} \\
=-\cos u \sin^2 v\vec{i}-\sin u \sin^2 v\vec{j}-\sin v \cos v \vec{k}
\]
(2) Calculate $\left| \frac{\partial\vec{r}}{\partial u}\times\frac{\partial\vec{r}}{\partial v}\right|$.
\begin{eqnarray*}
\left| \frac{\partial\vec{r}}{\partial u}\times\frac{\partial\vec{r}}{\partial v}\right| &=&
\sqrt{|-\cos u \sin^2 v\vec{i}-\sin u \sin^2 v\vec{j}-\sin v \cos v \vec{k}|^2} \\
&=& \sqrt{\cos^2 u \sin^4 v+\sin u^2 \sin^4 v+\sin^2 v \cos^2 v} \\
&=& \sqrt{\sin^4 v(\cos^2 u+\sin u^2)+\sin^2 v \cos^2 v} \\
&=& \sqrt{\sin^2 v(\sin^2 v+\cos^2 v)} \\
&=& |\sin v|
\end{eqnarray*}
Therefore, we have the integral.
\begin{eqnarray*}
\int^{\pi}_0 |\sin v| dv \int^{2\pi}_0 du &=& [-\cos v]^{\pi}_0 \cdot 2\pi \\
&=& [-\cos \pi -(-\cos 0)] \cdot 2\pi \\
&=& [ 1 + 1] \cdot 2\pi \\
&=& 4\pi
\end{eqnarray*}
Powered by Hirophysics.com
No comments:
Post a Comment