A curved surface, S, is given as
\vec{r}=\cos u \sin v \vec{i} + \sin u \sin v \vec{j} + \cos v \vec{k}
(0\leqq u \leqq 2\pi, 0\leqq v \leqq \pi)
(1) Find \frac{\partial\vec{r}}{\partial u}\times\frac{\partial\vec{r}}{\partial v}.
(2) Find \iint_S \left| \frac{\partial\vec{r}}{\partial u}\times\frac{\partial\vec{r}}{\partial v}\right| dudv.
Answer:
(1) Take the partial derivative.
\begin{eqnarray} \frac{\partial\vec{r}}{\partial u} &=& -\sin u \sin v \vec{i} + \cos u \sin v \vec{j} \\ \frac{\partial\vec{r}}{\partial v} &=& \cos u \cos v \vec{i} + \sin u \cos v \vec{j} -\sin v \vec{k} \end{eqnarray}
Therefore,
\frac{\partial\vec{r}}{\partial u}\times\frac{\partial\vec{r}}{\partial v} = \left| \begin{array}{c} \vec{i} & \vec{j} & \vec{k} \\ \left(\frac{\partial\vec{r}}{\partial u}\right)_i & \left(\frac{\partial\vec{r}}{\partial u}\right)_j & \left(\frac{\partial\vec{r}}{\partial u}\right)_k \\ \left(\frac{\partial\vec{r}}{\partial v}\right)_i & \left(\frac{\partial\vec{r}}{\partial v}\right)_j & \left(\frac{\partial\vec{r}}{\partial v}\right)_k \\ \end{array} \right| \\ = \left| \begin{array}{c} \vec{i} & \vec{j} & \vec{k} \\ -\sin u \sin v & \cos u \sin v & 0 \\ \cos u \cos v & \sin u \cos v & -\sin v \\ \end{array} \right| \\ = \left| \begin{array}{c} \cos u \sin v & 0 \\ \sin u \cos v & -\sin v \\ \end{array} \right|\vec{i} - \left| \begin{array}{c} -\sin u \sin v & 0 \\ \cos u \cos v & -\sin v \\ \end{array} \right| \vec{j} + \left| \begin{array}{c} -\sin u \sin v & \cos u \sin v \\ \cos u \cos v & \sin u \cos v \\ \end{array} \right|\vec{k} \\ =-\cos u \sin^2 v\vec{i}-\sin u \sin^2 v\vec{j}-\sin v \cos v(\sin^2 u +\cos^2 u)\vec{k} \\ =-\cos u \sin^2 v\vec{i}-\sin u \sin^2 v\vec{j}-\sin v \cos v \vec{k}
(2) Calculate \left| \frac{\partial\vec{r}}{\partial u}\times\frac{\partial\vec{r}}{\partial v}\right|.
\begin{eqnarray*} \left| \frac{\partial\vec{r}}{\partial u}\times\frac{\partial\vec{r}}{\partial v}\right| &=& \sqrt{|-\cos u \sin^2 v\vec{i}-\sin u \sin^2 v\vec{j}-\sin v \cos v \vec{k}|^2} \\ &=& \sqrt{\cos^2 u \sin^4 v+\sin u^2 \sin^4 v+\sin^2 v \cos^2 v} \\ &=& \sqrt{\sin^4 v(\cos^2 u+\sin u^2)+\sin^2 v \cos^2 v} \\ &=& \sqrt{\sin^2 v(\sin^2 v+\cos^2 v)} \\ &=& |\sin v| \end{eqnarray*}
Therefore, we have the integral.
\begin{eqnarray*} \int^{\pi}_0 |\sin v| dv \int^{2\pi}_0 du &=& [-\cos v]^{\pi}_0 \cdot 2\pi \\ &=& [-\cos \pi -(-\cos 0)] \cdot 2\pi \\ &=& [ 1 + 1] \cdot 2\pi \\ &=& 4\pi \end{eqnarray*}
Powered by Hirophysics.com
No comments:
Post a Comment