Question:
(1) Find the eigenvalues and eigenvectors of a matrix,
\[
A=\left(
\begin{array}{c}
-5 & 6 \\
-4 & 5
\end{array}
\right)
\]
(2) If $C$ is constructed by the eigen vectors obtained above, find whether $C$ is a regular function and whether $C^{-1}AC$ can be a diagonal matrix.
Answer:
(1) The eigenvalues can be obtained from $|\lambda E - A|=0$ where $E$ is the unit matrix.
\begin{eqnarray}
|\lambda E - A| &=&
\left|
\begin{array}{c}
\lambda+5 & -6 \\
4 & \lambda-5
\end{array}
\right|
&=& (\lambda+5)(\lambda-5)+24 \\
&=& \lambda^2 -25 +24 \\
&=& \lambda^2 - 1
\end{eqnarray}
Therefore, the eigenvalues are $\lambda = \pm 1$. The eigen equation can be expressed as
\[
A{\bf{x}} = \lambda{\bf{x}} \quad \mathrm{where} \
{\bf{x}}=\left(
\begin{array}{c}
x \\
y
\end{array}
\right) \neq 0
\]
Thus,
\begin{eqnarray*}
\left(
\begin{array}{c}
-5-\lambda & 6 \\
-4 & 5-\lambda
\end{array}
\right)
\left( \begin{array}{c}
x \\
y
\end{array} \right) &=& 0 \\
\left(
\begin{array}{c}
-5-1 & 6 \\
-4 & 5-1
\end{array}
\right)
\left( \begin{array}{c}
x \\
y
\end{array} \right) &=&
\left(
\begin{array}{c}
-6 & 6 \\
-4 & 4
\end{array}
\right)
\left( \begin{array}{c}
x \\
y
\end{array} \right) &=& 0
\end{eqnarray*}
Since the vector is not zero, in order to hold the equation, the ratio must be $x:y=1:1$. Likewise, plug in $\lambda=-1$; then, we have $x:y=3:2$. Therefore, the eigen vectors are
\[
{\bf p}=\left( \begin{array}{c}
x \\
y
\end{array} \right) =
\left(
\begin{array}{c}
1\\
1
\end{array}
\right), \quad
{\bf q}=\left( \begin{array}{c}
x \\
y
\end{array} \right) =
\left(
\begin{array}{c}
3 \\
2
\end{array}
\right)
\]
(2) A matrix $C$ is combined by two eigen vectors obtained in question (1). Namely, $C=({\bf p},{\bf q})$.
\[
C = \left(\begin{array}{c}
1 & 3 \\
1 & 2
\end{array}\right)
\]
Calculate the determinant.
\[
\det C = 1 \cdot 2 - 1 \cdot 3 = -1
\]
Since $\det \neq 0$, $C$ is regular. Now, calculate the following:
\[
C^{-1}AC =
\left(\begin{array}{c}
-2 & 3 \\
1 & -1
\end{array}\right)
\left(
\begin{array}{c}
-5 & 6 \\
-4 & 5
\end{array}
\right)
\left(\begin{array}{c}
1 & 3 \\
1 & 2
\end{array}\right)
=
\left(
\begin{array}{c}
1 & 0 \\
0 & -1
\end{array}
\right)
\]
This is a diagonal matrix and notice that the values correspond to the eigenvalues of matrix $A$.
Powered by Hirophysics.com
Reference,
The inverse matrix for a 2$\times$2 matix is
\[
M = \left(
\begin{array}{c}
a & b \\
c & d
\end{array}
\right), \quad
M^{-1} = \frac{1}{\det M}
\left(
\begin{array}{c}
d & -b \\
-c & a
\end{array}
\right)
\]
No comments:
Post a Comment